5 research outputs found

    Supporting Special-Purpose Health Care Models via Web Interfaces

    Get PDF
    The potential of the Web, via both the Internet and intranets, to facilitate development of clinical information systems has been evident for some time. Most Web-based clinical workstations interfaces, however, provide merely a loose collection of access channels. There are numerous examples of systems for access to either patient data or clinical guidelines, but only isolated cases where clinical decision support is presented integrally with the process of patient care, in particular, in the form of active alerts and reminders based on patient data. Moreover, pressures in the health industry are increasing the need for doctors to practice in accordance with ¿best practice¿ guidelines and often to operate under novel health-care arrangements. We present the Care Plan On-Line (CPOL) system, which provides intranet-based support for the SA HealthPlus Coordinated Care model for chronic disease management. We describe the interface design rationale of CPOL and its implementation framework, which is flexible and broadly applicable to support new health care models over intranets or the Internet

    A randomized controlled trial of eplerenone in asymptomatic phospholamban p.Arg14del carriers

    Get PDF
    INTRODUCTION Phospholamban (PLN; p.Arg14del) cardiomyopathy is an inherited disease caused by the pathogenic p.Arg14del variant in the PLN gene. Clinically, it is characterized by malignant ventricular arrhythmias and progressive heart failure.1,2 Cardiac fibrotic tissue remodelling occurs early on in PLN p.Arg14del carriers.3,4 Eplerenone was deemed a treatment candidate because of its beneficial effects on ventricular remodelling and antifibrotic properties.5,6 We conducted the multicentre randomized trial ‘intervention in PHOspholamban RElated CArdiomyopathy STudy’ (i-PHORECAST) to assess whether treatment with eplerenone of asymptomatic PLN p.Arg14del carriers attenuates disease onset and progression

    A randomized controlled trial of eplerenone in asymptomatic phospholamban p.Arg14del carriers

    Get PDF
    Phospholamban (PLN; p.Arg14del) cardiomyopathy is an inherited disease caused by the pathogenic p.Arg14del variant in the PLN gene. Clinically, it is characterized by malignant ventricular arrhythmias and progressive heart failure.1,2 Cardiac fibrotic tissue remodelling occurs early on in PLN p.Arg14del carriers.3,4 Eplerenone was deemed a treatment candidate because of its beneficial effects on ventricular remodelling and antifibrotic properties.5,6 We conducted the multicentre randomized trial ‘intervention in PHOspholamban RElated CArdiomyopathy STudy’ (i-PHORECAST) to assess whether treatment with eplerenone of asymptomatic PLN p.Arg14del carriers attenuates disease onset and progression

    Prosthesis alignment affects axial rotation motion after total knee replacement: a prospective <it>in vivo</it> study combining computed tomography and fluoroscopic evaluations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Clinical consequences of alignment errors in total knee replacement (TKR) have led to the rigorous evaluation of surgical alignment techniques. Rotational alignment in the transverse plane has proven particularly problematic, with errors due to component malalignment relative to bone anatomic landmarks and an overall mismatch between the femoral and tibial components’ relative positions. Ranges of nominal rotational alignment are not well defined, especially for the tibial component and for relative rotational mismatch, and some studies advocate the use of mobile-bearing TKR to accommodate the resulting small rotation errors. However, the relationships between prosthesis rotational alignment and mobile-bearing polyethylene insert motion are poorly understood. This prospective, <it>in vivo</it> study evaluates whether component malalignment and mismatch affect axial rotation motions during passive knee flexion after TKR.</p> <p>Methods</p> <p>Eighty patients were implanted with mobile-bearing TKR. Rotational alignment of the femoral and tibial components was measured from postoperative CT scans. All TKR were categorized into nominal or outlier groups based on defined norms for surgical rotational alignment relative to bone anatomic landmarks and relative rotational mismatch between the femoral and tibial components. Axial rotation motion of the femoral, tibial and polyethylene bearing components was measured from fluoroscopic images acquired during passive knee flexion.</p> <p>Results</p> <p>Axial rotation motion was generally accomplished in two phases, dominated by polyethylene bearing rotation on the tibial component in early to mid-flexion and then femoral component rotation on the polyethylene articular surface in later flexion. Opposite rotations of the femur-bearing and bearing-baseplate articulations were evident at flexion greater than 80°. Knees with outlier alignment had lower magnitudes of axial rotation and distinct transitions from external to internal rotation during mid-flexion. Knees with femoral-tibial rotational mismatch had significantly lower total axial rotation compared to knees with nominal alignment.</p> <p>Conclusions</p> <p>Maintaining relative rotational mismatch within ±5° during TKR provided for controlled knee axial rotation during flexion. TKR with rotational alignment outside of defined surgical norms, with either positive or negative mismatch, experienced measurable kinematic differences and presented different patterns of axial rotation motions during passive knee flexion compared to TKR with nominal mismatch. These findings support previous studies linking prosthesis rotational alignment with inferior clinical and functional outcomes.</p> <p>Trial Registration</p> <p>Clinical Trials NCT01022099</p
    corecore